A Paving System
We Can All Live With
A Paving System We Can All Live With
The Problem
Increasing urbanization generates excess stormwater runoff from impervious surfaces. What were once farmers’ fields or native forests are now subdivisions, shopping malls and roadways. This strains stormwater drainage systems, overloading them during periods of heavy rain. As a result, downstream areas are encountering more frequent and intense flooding. In addition, groundwater elevations are dropping and streams are experiencing increased bank erosion and sedimentation.

With respect to water quality, heavy metals, hydrocarbons, nutrients, rubber, dust and sediment collect on impervious surfaces during dry weather. These accumulations are flushed away during the next rainstorm and enter downstream watercourses. The “first flush” is the initial period of a rainstorm where pollutant concentrations are highest. These pollutants enter streams, lakes, and bays affecting the quality of receiving waters for drinking, recreation, and fishing. Treasured fish species such as salmon, and other eco-systems are negatively impacted by these events.

The Solution - AquaPave® Permeable On-Site Stormwater Source Control System
Regulatory agencies have responded to the problem by requiring developers to utilize Best Management Practices (BMPs) to deal with stormwater on-site; in short, no impacts are to be imposed on downstream receptors. The U.S. Environmental Protection Agency has recognized permeable pavements as a BMP suitable for improving stormwater management.

The AquaPave® Permeable On-Site Stormwater Source Control System is an important first effort to reduce excess stormwater runoff quantities and improve water quality. The AquaPave® system allows commonly recurring rainstorms to infiltrate through a permeable concrete pavingstone surface into a clear crushed open-graded aggregate base before being released into storm sewers or watercourses. Known as permeable interlocking concrete pavement, the system acts as an infiltration facility for the storage, treatment, and improvement of released water.

All AquaPave® pavers and slabs provide drainage through vertical channels and allow water through the surface at a rate of approximately 2.5 litres/sec/m² (354’/hr). This is reduced to 1.25 litres/sec/m² (177’/hr) due to the effects of the geotextile. If the soil subgrade and underlying geology are suitable, some or all of the water can infiltrate directly into the subgrade, thereby substantially reducing outflow rates. Alternately, the surface water can be temporarily stored in the sub-base before being slowly released into the receiving water system. The AquaPave® system helps to clean and improve the quality of runoff water by filtration through the base and microbial action. In many instances, the outflow can be re-used for irrigation of domestic and commercial landscapes.

Applications
Consisting of permeable interlocking concrete pavers and a clear crushed open-graded aggregate base, the AquaPave® Permeable On-Site Stormwater Source Control System is suitable for parking lots, residential driveways, commercial entrances, overflow parking areas, boat ramps, sidewalks, plazas, and low-speed residential roads.

Most municipalities strive to manage runoff from a range of storms with the intent of reducing runoff volumes and peak flows to those from pre-development conditions. In addition, many U.S. cities must obtain permits from the National Pollutant Discharge Elimination System (NPDES) administered by state and federal agencies. The applications for permits must include post-construction BMPs for the reduction of runoff and pollutants. As an effective BMP, the AquaPave® Permeable On-Site Stormwater Source Control System can be part of a municipality’s stormwater management plan and help achieve compliance with the NPDES regulations.

Photos at right demonstrate the drainage capability of a typical AquaPave® installation over a two minute period.
When designing an AquaPave® system, the following conditions need to be determined by a qualified design professional:

1. The range of design storms and antecedent moisture conditions that will be managed by the system. These are commonly recurring rain storms.
2. The total area contributing to the AquaPave® system. Typically this is no greater than a 2:1 ratio based on the standard design as shown below.
3. The amount of water that will enter the system and be stored in the base, treated, filtrated, and/or released over a specific time, typically between 24 and 72 hours.
4. The long-term infiltration capacity of the soil subgrade.
5. Exfiltration options for the base is guided by the determinations in 1 through 4.

Exfiltration options include:
- **Full Exfiltration** into the soil subgrade with no underlying drain pipes.
- **Partial Exfiltration**, i.e., some infiltration into the soil subgrade and some detention with drainage through underlying pipes.
- **No Exfiltration** where an impermeable liner captures the stored runoff and prevents its infiltration to the soil. This is a detention facility with drainage through underlying pipes.
6. Means to handle rainstorms that exceed the storage capacity of the base.
7. If a vehicular application, the base thickness required to support the anticipated traffic loads.

Key Components of the AquaPave® Permeable On-Site Stormwater Source Control Systems

- **Concrete curbing**
- **AquaPave® Pavers**
- **Geotextile**
- **Optional Membrane** HDPE (high density polyethylene) or EPDM (ethylene propylene diene monomer)
- **AP-SC Inbitex® Geotextile**
- **AP-SC1000 or 2000 woven geotextile**
- **Engineered Joint Stabilizer applied between pavers**
- **5mm (1/4”) clear crushed open-graded bedding course 50mm (2”) thick**
- **Optional AP-BR5000 or BR6000 Geogrid**
- **AP-SC Inbitex® Geotextile**
- **Membrane (HDPE or EPDM) for use with tanked no exfiltration system**
- **Outfall for backup drains and lateral perforated piping in base as required**

Note: Be sure to verify design requirements of applicable regulatory agencies.
Typical Systems and Exfiltration Options *(Modify to site conditions)*

Full Exfiltration System

- **Galvanized steel or PVC screen** fastened over inlets
- **Curbside restraint with cut-outs for overflow drainage**
- **Overflow pipe(s) - diameter, location and quantity vary with design; locate away from vehicular traffic**
- **Outfall pipe(s) sloped to storm sewer or stream**

Partial Exfiltration System

- **Galvanized steel or PVC screen** fastened over inlets
- **Curbside restraint with cut-outs for overflow drainage**
- **Overflow pipe(s) - diameter, location and quantity vary with design; locate away from vehicular traffic**
- **Outfall pipe(s) sloped to storm sewer or stream**

No Exfiltration System

- **Galvanized steel or PVC screen** fastened over inlets
- **Curbside restraint with cut-outs for overflow drainage**
- **Overflow pipe(s) - diameter, location and quantity vary with design; locate away from vehicular traffic**
- **Outfall pipe(s) sloped to storm sewer or stream**
- **Soil subgrade sloped to drain**

Typical Residential Driveway/Sidewalk Construction

- **5mm (1/4") clear crush open-graded Bedding Course**
- **AquaPave® 80mm (3-1/8")**
- **AquaSlab® 50mm (2")**
- **AP-SC Inbitex® Geotextile**
- **20mm (3/4") clear crush open-graded aggregate Sub-base**

On all designs:
- Open-graded base thickness varies depending on water management and/or structural requirements.
- For pedestrian sidewalks or residential driveway applications only the 20mm clear crushed open-graded aggregate, upper sub-base is required. This should be a minimum of 6".
Standard Colors *Color blends should be installed from 2 or 3 bundles for best results

Charcoal Matte Tan Matte Pewter Matte Red Matte Rustic Blend* Desert Blend* Hamilton Blend* Salmon Blend*
Nitterhouse Masonry Products, LLC offers AquaPave® and AquaSlab® paving units for use over full, partial, or no exfiltration base designs.

AquaPave® in Holland is designed for areas subject to constant vehicle traffic such as parking lots and low speed roads, and is suited for single family residential driveways and pedestrian areas.

AquaSlab® supports pedestrian applications only. All paving units are manufactured to meet ASTM C 936, Standard Specification for Solid Concrete Interlocking Paving Units for projects in the United States.

For projects in Canada, paving units will meet CSA A231.1/A231.2-06, Precast Concrete Slabs/ Precast Concrete Pavers.

Our patented system, AquaPave® and AquaSlab® provide drainage through openings in the surface created by vertical slots on the sides of the units. These allow water to enter and flow at rates as high as 354 in./hour (9000 mm/hr or 9000 litres/m²/hr).
Benefits

Lower Construction Costs
In conventional drainage design, infiltration and detention facilities are separate from impervious parking lots and pedestrian areas. AquraPave® On-Site Stormwater Source Control System combines the parking, infiltration and detention facilities into one location, allowing more space on the site for income-generating buildings. With the water detention facilities located below ground, we eliminate public safety concerns associated with the accidental drownings of children. This also eliminates the breeding areas for insect born diseases such as West Nile Virus.

For some designs there will also be cost savings through the reduction or elimination of typical stormwater management infrastructure, including collection works, water retention ponds, treatment systems (e.g. oil/water separators), and associated appurtenances.

Considering the ever increasing cost of oil, AquraPave® is becoming comparable in unit price to other traditional paving systems. Couple this with the increased design life equivalent and you have a superior, more aesthetically pleasing surface at a lower cost. With its flat continuous surface, AquraPave® accepts pavement marking materials such as paint and thermal plastic tapes.

Reduction of Runoff
With an open surface area of about 2%, the openings can infiltrate as much as 354 in/hr (9000 mm/hr or 9000 litres/m2/hr). The infiltration rate of the clear crushed open-graded aggregate used for the bedding and base is similar. For design purposes, a conservative 90% reduction in efficiency is generally assumed for infiltration facility design, due to the build-up of sediment over years of service. When considering a 90% reduction of initial infiltration as a typical design assumption, the AquraPave® On-Site Stormwater Source Control System will still capture, treat, infiltrate, and filter rainstorms over 35.4 in/hr (900 mm/hr or 900 litres/m2/hr). This includes the commonly recurring storms, which generate the most pollution.

Recharging the Groundwater Table
With “Full Exfiltration” and “Partial Exfiltration” systems, some if not all of the rain water that falls on the paved area is allowed to infiltrate into the ground and recharge the local groundwater table. Groundwater is not only a primary source of drinking water, but it also maintains the base flow characteristics of our watercourses between precipitation events.

Roof Water Management
Roof water can be discharged into the sub-base. With gravity fed drainage it is recommended that the water is introduced into the sub-base by means of a sump with a manhole cover adjacent to the paved area. Any debris can be easily caught and cleared. The water is then dispersed within the system via a permavoid distribution tank or perforated outlet pipe. With siphonic drainage, a special chamber is used to disperse the water within the sub-base.

Pollutant Removal Capabilities

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Solids</th>
<th>Nutrients</th>
<th>Bacteria</th>
<th>Dissolved oxygen demands</th>
<th>Metals</th>
<th>Oils (PAHs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil erosion</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Cleared vegetation</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Fertilizers</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Human waste</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Animal waste</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Vehicle fuels & fluids</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Fuel combustion</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Vehicle wear</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Industrial/household chemicals</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Industrial processes</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Paints & preservatives</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Common Sources of Pollution in Urban Stormwater Runoff

PAHs = polynuclear aromatic hydrocarbons
SOCs = synthetic organic compounds

Polymeric Distribution Tank

- **Nickel**
- **Copper**
- **Cadmium**
- **Lead**
- **Palladium**
- **Platinum**

Data provided by the kind permission of Dr. Chris Jefferies and Fiona Napier, Urban Water Technology Centre, University of Alberta, Dundee.

Projected average annual pollutant removal capability of infiltration areas in percent

Note: These rates are not based on actual data since monitoring what enters and leaves any infiltration facility is difficult to measure. This data is based on land application of pollutants and their treatment through soils.

Percentage of Heavy Metals Removed

<table>
<thead>
<tr>
<th>% removed</th>
<th>Nickel</th>
<th>Copper</th>
<th>Cadmium</th>
<th>Lead</th>
<th>Palladium</th>
<th>Platinum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>75%</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>90%</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>95%</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>99%</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Data provided by the kind permission of Dr. Chris Jefferies and Fiona Napier, Urban Water Technology Centre, University of Alberta, Dundee.

Ref. 1
Ref. 2
Ref. 3
Management of Oil Contaminates

"The runoff from parking lots represents the biggest single source of tonnages of oil going into the ocean" – Brian Giroux, Port Hardy Forum on the Development of Off-shore Oil Exploration & Drilling.

Oil drippings and related hydrocarbons are typically digested within the base through filtering and microbial action. Research by Coventry University, England on microbial action has shown that the Aquapave® system is capable of bioremediation at the rate of 70 grams (0.15 lbs.) of oil per square metre (approx. 11 ft²) per year. Severe hydrocarbon contamination can be dealt with by feeding the affected areas with slow release fertilizer. In addition, the pH of water exiting the system can be raised slightly which assists in buffering lower pH acid rain.

Filtering and Treatment of Pollutants

Studies of permeable interlocking concrete pavement have shown substantial reduction of non-point source pollutants in runoff. The clear crushed open-graded aggregate base has a storage volume of at least 30%. This storage capacity enables a decrease in peak flows and treatment of pollutants, especially nutrients and total suspended solids prior to drainage of the water from the base through drain pipes. Substantial reductions of metals can occur in full or partial base infiltration designs where the water enters silt and clay soils.
Pedestrian Friendly
The AquaPave® patented design was created to accommodate all types of pedestrian traffic. Unlike other permeable pavements, the AquaPave® system does not incorporate loose aggregates on its surface, making it safer and more comfortable to walk on, even with high heels. The result is a flat smooth walking surface for customers and employees, completely free of water build up. AquaPave® is ideal for high foot traffic areas like building entrances, parking lots, inspection areas, and bike paths.

LEED® Green Building Rating System
The Leadership in Energy and Environmental Design (LEED®) rating system uses a point system to recognize environmentally conscious site and building designs. LEED® is a design guideline used by some agencies for certification. It is a voluntary, consensus-based rating system to encourage sustainable construction sites, and buildings. In the USA it is administered by the U.S. Green Building Council (www.usgbc.org) and in Canada by the Canadian Green Build Council (www.cagbc.org). More information can also be obtained in ICPI Tech Spec 16 (Achieving LEED® Credits with Segmental Concrete Pavement).

The AquaPave® Permeable On-site Stormwater Source Control System can be eligible for earning points under LEED®. For example, SS Credit 6.1 offers 1 point for stormwater management on building sites where the existing impervious surface is greater than 50%. The LEED® requirement is that runoff rate and quantity be reduced by at least 25%. The AquaPave® system can reduce runoff rates and quantities from common storms by as much as 100%.

Another opportunity is MR Credit 5.1 (1 to 2 points) that requires a minimum of 20% of building materials manufactured within a radius of 800 km (500 miles). MR Credit 5.2 earns an additional point if 50% of the regionally manufactured materials are extracted, harvested or recovered within this same radius. Most AquaPave® projects will be within this distance from the manufacturer’s plant, earning these credits.

There is also SS Credit 6.2 (1 point), Stormwater Management Treatment. (Additional LEED® points are available, see page 13 under Water Harvesting.)
Access for People With Disabilities

_AquaPave* _paving units have gaps less than 13 mm wide (.5118"), which meet the recommendations of the Americans with Disabilities Act Accessibility Guidelines (ADAAG). Since _AquaPave* _does not need to be sloped to drain, access for the disabled can be made easier. _AquaPave* _provides a safe, smooth surface free of loose aggregates ensuring a reliable footing for the elderly or disabled using canes, crutches, walkers, or wheelchairs.

Slip and Skid Resistance

The ADAAG recommends that the slip resistance, expressed as a minimum coefficient of friction, be 0.6 for accessible routes and 0.8 for ramps. Testing conducted on behalf of the ICPI has verified that pavers, with the exception of pavers with polished surfaces, meet these guidelines. Vehicular skid resistance tests have demonstrated that stopping distances are shorter at speeds up to 40 MPH than either asphalt or typical concrete surfaces. Since the surface of the _AquaPave* _system consists of concrete pavers, the same resistance to skidding and shorter stopping distances can be expected. Couple this with the rapid infiltration of water, and the result is a reduction in accidents and increased safety.
Design Life

AquaPave® has a design life equivalent to that of conventional interlocking concrete pavers, typically 30 to 40 years. Should the pavers become damaged or cracked, they can be removed and replaced with new ones. The infiltration rate, storage capacity, and pollution reduction performance of the base depends on the amount of sediment that enters it. Therefore, control of sediment entering the system during and after construction is vital to continuing infiltration performance. When outside sources of sediment are kept from the pavement, a minimum of 20 to 25 year life can be expected. When the rate of outflow is significantly diminished, the AquaPave® pavers are removed, the clear crushed open-graded bedding and the Inbitex® geotextile are replaced, and the AquaPave® pavers reinstated.

Infiltration facilities and permeable interlocking concrete pavements such as AquaPave® are conservatively designed with the assumption of a 90% reduction in the infiltration rate. Using this as a worse case scenario, 10% of the initial infiltration rate of 354 inches (9000 mm) per hour would be 35.4 inches (900 mm) per hour. This infiltration rate would still be 18 times greater than 2 in. (50 mm) per hour system infiltration rate, typical to many designs.

Professor John Argue of the Urban Water Resources Centre at the University of South Australia in Adelaide has conducted extensive research on the siltation of the pavers and bedding layer. His research assumed rainfall of 22.8 inches (580 mm) per year with a loading of 200 parts per million of silts. This is a sediment loading similar to what would be found in an established urban catchment. His conclusion was that even after a thirty year life, the permeability of the surface was only reduced by 25%. (For a copy of this research, please contact us.)

Design Considerations & Maintenance

All pavement systems require regular maintenance. With the AquaPave® system, sediment that collects in the surface openings should be removed by vacuuming a minimum of twice a year. It is recommended that this take place in the early spring and late fall during a dry period. In most cases this operation is already a part of a regular maintenance program. AquaPave® surfaces can be cleaned by pressure washing without risking damage to its components or dislodging and spreading loose aggregates like in other permeable paver systems. This makes it ideal for high foot traffic areas such as mall entrances and sidewalks.
Although there is a sizable factor of safety in terms of infiltration capabilities through the pavers, there is always the chance that sheeted ice or packed snow between plowing events could plug the system; should this occur, some surface water runoff would be expected. Every project should therefore have one or more separate spillways cut into the concrete curbs to allow for these conditions.

Design consideration should also be given to ensuring that soft landscaping is retained to prevent migration of softscape materials (e.g. topsoil) into the AquaPave® surface. Doing so will significantly help to maintain the integrity of the system.

AquaPave® doesn’t incorporate loose aggregates or turf as an integral component of its system, therefore, mechanical snow removal methods are very effective on its flat continuous surface. Other types of permeable pavements may have to rely on chemical deicing due to their shaped top surface. This may be counter to the water handling portion of the installation.

Settlement up to 25 mm (1 in.) in the surface, as in all segmental interlocking systems, can be easily corrected. First, remove the area of pavers affected, then fill and compact the clear crushed open-graded aggregate used under the paving units. AquaPave® can then be reinstated and compacted with a plate compactor. Likewise, broken pavers can simply be removed, replaced and compacted. Unlike other paving systems, AquaPave® can be immediately reopened for use. Heaving from freezing water in the crushed stone base is generally not a concern. There is typically sufficient void space within the aggregate to accommodate the 10% expansion in the volume of water when it freezes.

An observation well is recommended in all installations of the AquaPave® Permeable On-Site Stormwater Source Control System. The well is typically a 150 mm (6 in.) diameter perforated pipe, placed near the lowest elevation of the pavement, out of the way of vehicular traffic. The top of the well can be under the pavers, hidden from view and covered with a secure lid. The well enables monitoring of outflow and sedimentation after storms, as well as an opportunity to sample and test water quality. Outflow should be monitored at least once a year after a large storm. Every project should have separate overflow drains or spillways to accommodate the saturation conditions that occur in high intensity and/or long duration rain storms.
AquaPave® In Conjunction With Conventional Interlocking Concrete Pavers

- Curb/edge restraint with cut-outs for overflow drainage
- 80mm (3-1/8”) crushed open-graded bedding course
- Concrete curb restraint
- Upper sub-base 20mm (3/4”) crushed open-graded aggregate
- Standard Pavers
- Optional AP-SC1000 or BR5000 Geogrid
- AP-SG Inbitex® Geotextile®
- Membrane (HDPE or EPDM)*
- Optional AP-BR5000 or BR6000 Geogrid
- Standard Pavers
- Lower sub-base 63mm (2-1/2”) crushed open-graded aggregate (commonly referred to as soil ballast)
- Curb/edge restraint with cut-outs for overflow drainage
- AquaPave® 80mm (3-1/8”) crushed open-graded bedding course
- Concrete curb restraint
- Upper sub-base 20mm (3/4”) crushed open-graded aggregate
- Standard Pavers
- Optional AP-SC1000 or BR5000 Geogrid
- AP-SG Inbitex® Geotextile®
- Membrane (HDPE or EPDM)*
- Optional AP-BR5000 or BR6000 Geogrid
- AP-SG Inbitex® Geotextile®
- Membrane (HDPE or EPDM)*
- Optional AP-BR5000 or BR6000 Geogrid
- AP-SG Inbitex® Geotextile®
- Membrane (HDPE or EPDM)*
- Outfall pipe
- Standard road base material

AquaPave® In Conjunction With Asphalt Pavement

- Curb/edge restraint with cut-outs for overflow drainage
- 80mm (3-1/8”) crushed open-graded bedding course
- Concrete curb restraint
- Upper sub-base 20mm (3/4”) crushed open-graded aggregate
- Asphalt Pavement
- AP-SG Inbitex® Geotextile®
- Optional AP-SC1000 or BR5000 Geogrid
- AP-SG Inbitex® Geotextile®
- Membrane (HDPE or EPDM)*
- Optional AP-BR5000 or BR6000 Geogrid
- AP-SG Inbitex® Geotextile®
- Membrane (HDPE or EPDM)*
- Outfall pipe
- Lower sub-base 63mm (2-1/2”) crushed open-graded aggregate (commonly referred to as soil ballast)

*All conversions from Metric to Imperial are approximate. Illustrations are not to scale.
Water Harvesting

Typically, filtered and treated water exiting the AquaPave® On-site Stormwater Source Control System can be re-used for non-potable uses such as domestic or commercial irrigation. In fact, some schools and youth hostels are currently using this non-potable water for the flushing of lavatories. This conserves and economizes on water usage and charges in some localities.

These practices may also qualify for additional LEED® points under Water Efficiency:
- 1 point WE credit 1.1
- 1 point WE credit 1.2
- 1 point WE credit 2
- 1 point WE credit 3.1
- 1 point WE credit 3.2

Root System Maintenance

Availability of air and water to the root systems of existing or newly planted vegetation, particularly trees, is key to their survival and growth. When building near trees, the previous BMPs were to install a grate around the perimeter of the tree to allow for direct infiltration, or to install a subgrade irrigation system.

It has been proven that the AquaPave® system can be used successfully with load bearing tree soils. This allows the pavers to be installed right up to the border of the tree pit, which increases the available parking area, while still allowing air and water to reach the root structure. This practice is not possible with conventional paving.

In applications where additional water is desired within the root system, it is possible to divert the overflow from a “Partial Exfiltration” or “No Exfiltration” system to the root zone (see below, left side), or even create an artificial tanked system (see below, right side).

Sanders Garden World, an example of using reclaimed water from a tanked system to provide plant irrigation.

AquaPave® Tree Planting Infiltration System

- Curb/edge restraint with cut-outs for overflow drainage
- AquaPave® 80mm (3-1/8”)
- 5mm (1/4”) clear crushed open-graded bedding course
- Perforated pipe surrounded by gravel and AP-SC1000 or 2000 Woven Geotextile
- Depth to be specified by landscape architect

AquaPave® Tree Planting Tanked System

- Concrete curb restraint
- AP-SC Inbitex® Geotextile
- Membrane (HDPE or EPDM)
- Potential rooting area
- Load bearing tree soil
- Irrigation
- Roadway

All conversions from Metric to Imperial are approximate. Illustrations are not to scale.
AquaPave® With Exfiltration System on a Slope

AquaPave® With A Standard Tank Stormwater Geothermal System

AquaPave® With A Tank Stormwater Geothermal System With Added Sub-base Depth

AquaPave® With An Exfiltration Geothermal System With Added Sub-base Depth

Note: When incorporating a geothermal system in conjunction with your AquaPave system, be sure to consult with your local geothermal engineer for site specific specifications in your region.

All conversions from Metric to Imperial are approximate. Illustrations are not to scale.
GUIDE SPECIFICATIONS FOR CONSTRUCTION OF AQUAPAVE® PERMEABLE STORMWATER MANAGEMENT SYSTEM

SECTION 32 14 13.19
AquaPave® Permeable Interlocking Concrete Pavement

Note: This guide specification is for the construction of an AquaPave® permeable interlocking concrete paver system which is designed to allow for the infiltration, detention and release of stormwater from a permeable, open-graded base. Components covered under this specification include AP-SC Woven Geotextile, permeable crushed open-graded sub-base, Inbitex® Geotextile, Bedding Layer, AquaPave® Pavers and Joint Stabilizer, which are generic to all AquaPave® Systems. Additional specifications are required where drain pipes, geogrid and/or an impermeable liner are used. The text below must be edited to suit specific project requirements. It will require review by a qualified civil or geotechnical engineer, or landscape architect familiar with the site conditions and local materials. Edit this specification as necessary to identify the design professional in the General Conditions of the Contract. This guide specification is intended for use in the U.S. or Canada and should be edited to fit terms and standards appropriate to each region.

PART 1 GENERAL

1.01 SUMMARY

A. Section Includes
 1. AquaPave® Permeable concrete pavers.
 3. Clear crushed open-graded aggregate Bedding Course.
 4. Inbitex® Geotextile.
 5. Clear crushed open-graded sub-base materials.
 6. AP-SC Woven Geotextiles.
 7. Impermeable liner.

Note: Curbs will typically be precast or cast-in-place concrete. Plastic edging with steel spikes can be used if the spikes are driven into substantial soils and are not driven into any of the open-graded drain components. Plastic edge restraint is recommended in areas of severe freeze-thaw cycles where use of metal spikes may be necessary.

1.02 RELATED SECTIONS

A. Section [-]: Curbs.
B. Section [-]: Stabilized aggregate base.
C. Section [-]: [PVC] Drainage pipes.
D. Section [-]: Impermeable liner.
E. Section [-]: Edge restraints.
F. Section [-]: Drainage pipes and appurtenances.
G. Section [-]: Earthworks/excavation/silt compaction.

1.03 REFERENCES

A. American Society of Testing Materials (ASTM)
 1. C 33, Specification for Concrete Aggregates.
 5. C 979, Specification for Pigments for Integrally Colored Concrete.
 6. D 698, Test Methods for Moisture Density Relations of Soil and Soil Aggregate Mixtures Using a 5.5-lb (2.49 kg) Rammer and 12 in. (305 mm) drop.
 7. D 1557, Test Methods for Moisture Density Relations of Soil and Soil Aggregate Mixtures Using a 10-lb (4.54 kg) Rammer and 18 in. (457 mm) drop.

B. Canadian Standards Association (CSA)
 1. A231.2-06, Precast Concrete Pavers.
 2. A231.1-06, Precast Concrete Paving Slabs.

1.04 SUBMITTALS

A. In accordance with Conditions of the Contract and Submittal Procedures Section.
B. Site Plan - indicate the following: area of AquaPave® Paver installation; perimeter conditions; stormwater run-on area; and, layout, patterns and color arrangements.
C. Installation details – provide details for each of the following: junction with other materials; expansion and control joints; layout, pattern, and recommendations of paving joint to fixtures; geotextile panel installation drawing; and, project formed details.
D. AquaPave® Engineered Joint Stabilizer, Bedding Course and Sub-base (upper and lower):
 1. Sieve analysis of aggregates per [ASTM C 136] [CSA A23.2A].
 2. Durability of aggregates using Micro-Deval Degradation per [ASTM D 6928] [CSA A23.2A].
 3. Percentage of angular and sub-angular particles per [ASTM D 2488].
 4. Site soils report including: in-situ density test reports; soil classification(s); infiltration rate(s) measured on-site under compacted conditions; and recommendations on suitability of native soils for the intended project.
F. Erosion and sediment control plan.
G. Stormwater management (quality and quantity) calculations.
H. Permeable concrete pavers:
 1. Manufacturer’s product catalog sheets with specifications.
 2. Four representative full-size samples of each paver type, thickness, color, and finish. Submit samples indicating the extremes of color expected in the finished installation. Note that accepted samples become the standard of acceptance for the work of this Section.
 3. Laboratory test reports certifying compliance of the concrete pavers [slabs] with [ASTM C 936] [CSA A231.1-06] [CSA A231.2-06].
 4. Manufacturer’s material safety data sheets for the safe handling of the specified materials and products.
I. Geotextiles:
 1. Manufacturer’s product catalog sheet with specifications.
 2. One 0.5 x 0.5 m (18 x 18 in.) panel of each geotextile for inspection and testing. The sample panels shall be uniform in size and roll, and shall be wrapped in plastic to protect the material from moisture and damage during shipment. Samples shall be externally tagged for easy identification.
 3. Laboratory test reports certifying compliance of the concrete pavers [slabs] with [ASTM C 936] [CSA A231.1-06] [CSA A231.2-06].
 4. Manufacturer’s material safety data sheets for the safe handling of the specified materials and products.
J. Paver Installation Subcontractor:
 1. Statement of Installer Qualifications: Submit list of comparable projects completed by installer. Include list of completed projects with project names, addresses, names of Architect/Engineer and Owners with contact information, and dates of construction.
 2. Copy of current “ICFI Concrete Paver Installer Certification School” Certificate for the site supervision personnel.
 3. A letter of assurance from the manufacturer stating that the site supervising personnel is an Approved AquaPave® Installer.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced installer who has successfully completed permeable pavement installations similar in design, material, and extent indicated for this project.
B. Field-constructed Mock-up:
 1. Install 3 x 3 m (10 x 10 ft) area with Geotextiles, Sub-base, Bedding Course, AquaPave® Engineered Joint Stabilizer and Pavers.
 2. Use area to determine surcharge of the bedding layer, joint sizes, lines, laying pattern(s), color(s), and texture of the job.
 3. Use the area as the standard to judge the remaining work.
 4. Subject to acceptance by the owner, mock-up may be retained as part of the finished work.
 5. If mock-up is not retained, remove and dispose of mock-up.
1.06 DELIVERY, STORAGE, AND HANDLING
A. Concrete Pavers:
1. Coordinate delivery of paving stones to minimize interference with onsite works, and normal use of buildings, roads and structures adjacent to works.
2. Deliver concrete pavers to the site palletized for transfer by forklift or clamp lift. Maintain manufacturer’s original, unopened, undamaged packaging with identification labels intact.
3. Unload pavers at job site in the location designated by the Installer Subcontractor and in such a manner that no damage occurs to the product or existing construction.
B. Imported Soils:
1. Handle and transport material to avoid segregation, contamination and degradation.
2. Keep different materials sufficiently separated as to prevent mixing. Do not dump or store one material on top of another unless it is part of the installation process.
3. Cover material with waterproof covering if needed to prevent exposure to rainfall or removal by wind. Secure the covering in place.
C. Geotextiles:
1. Geotextiles shall be delivered, stored and handled in accordance with [ASTM D-4873].
2. Maintain manufacturer’s original, unopened, undamaged packaging with identification labels intact.
3. The geotextiles shall be kept dry and wrapped in waterproof wrapping such that it is protected from UV light and the elements during delivery and storage.
D. The Installer shall check all materials delivered to the site to ensure that the correct materials have been received and are in good condition prior to signing off on the manufacturer’s packing slip.

1.07 ENVIRONMENTAL REQUIREMENTS
A. Do not install in heavy rain, or snow.
B. Do not install frozen Bedding Course, Joint Stabilizer or Sub-base materials.
C. Do not install on frozen soil subgrade.

1.08 MAINTENANCE
A. Extra materials: Provide [Specify area] [Specify percentage] additional material for use by owner for maintenance and repair.

PART 2 PRODUCTS

2.01 PAVING UNITS
A. Manufactured by Nitterhouse Masonry Products, LLC
Phone: 717-267-4500 Fax: 717-267-4585
AquaPave® Holland [Color]
4” x 8” x 3-1/8” thick
AquaSlab® Slab: [Color]
18” x 18” x 2” thick
Note: ASTM C 936 or CSA A231.2-06 applies to AquaPave® pavers.
B. Meets [ASTM C 936]. Freeze-thaw requirements may be waived in applications with no freeze-thaw conditions.
1. When testing 3-1/8 in. (80 mm) thick units for conformance to [ASTM C 936], compressive strength tests shall be corrected by multiplying the results by 1.18.
C. Manufactured in a plant where paving products are certified by ICPI as
D. Color(s): [Specify from selection in manufacturers’ product literature].

2.02 CLEAR CRUSHED OPEN-GRADED BEDDING COURSE AND SUB-BASE MATERIALS
Note: The bedding and sub-base materials are an integral part of the AquaPave® system design. When designing an AquaPave® system, compliance with the following points must be strictly observed.
A. Aggregates to be clean, non-plastic, and free from deleterious or foreign matter.
B. Micro-Deval Degradation of less than 8%. Soft Aggregates such as Limestone cannot be used as they will lead to total system failure.
C. Percentage of angular and sub-angular particles greater than 90%.
Do not use rounded river gravel. Sub-base and bedding materials must be clear crushed open-graded aggregates.
D. Gradation criteria
Note: D is the particle diameter size at which x percent of the particles are finer. For example, D15 is the particle size of the aggregate for which 15% of the particles are smaller and 85% are larger.
1. D15 upper and lower sub-base aggregate /D50 bedding aggregate < 5.
2. D50 upper and lower sub-base aggregate /D50 bedding aggregate > 2.
E. LA Abrasion <40, minimum CBR of 80%.
Note: The following gradations in Tables 1, 2 and 3 can be used for the clear crushed open-graded bedding course and sub-bases. Check gradations against the above criteria.

Table 1
Grading Requirements for Clear Crushed Bedding Course (ASTM D 448 No. 8)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 mm (1/2 in.)</td>
<td>100</td>
</tr>
<tr>
<td>9.5 mm (3/8 in.)</td>
<td>85 to 100</td>
</tr>
<tr>
<td>4.75 mm (No. 4)</td>
<td>10 to 30</td>
</tr>
<tr>
<td>2.36 mm (No. 8)</td>
<td>0 to 10</td>
</tr>
<tr>
<td>1.16 mm (No. 16)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Table 2
Grading Requirements for Clear Crushed Upper Sub-Base (ASTM D 448 No. 56)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5 mm (1-1/2 in.)</td>
<td>100</td>
</tr>
<tr>
<td>25 mm (1 in.)</td>
<td>90 to 100</td>
</tr>
<tr>
<td>19 mm (3/4)</td>
<td>40 to 85</td>
</tr>
<tr>
<td>12.5 mm (1/2 in.)</td>
<td>10 to 40</td>
</tr>
<tr>
<td>9.5 mm (3/8 in.)</td>
<td>0 to 15</td>
</tr>
<tr>
<td>4.75 mm (No. 4)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Table 3
Grading Requirements for Clear Crushed Lower Sub-Base (ASTM D 448 No. 2)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mm (3 in.)</td>
<td>100</td>
</tr>
<tr>
<td>63 mm (2-1/2 in.)</td>
<td>90 to 100</td>
</tr>
<tr>
<td>50 mm (2 in.)</td>
<td>35 to 70</td>
</tr>
<tr>
<td>37.5 mm (1-1/2 in.)</td>
<td>0 to 15</td>
</tr>
<tr>
<td>19 mm (3/4 in.)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

2.03 GEOTEXTILES
A. AP-SC1000, or Inbitex® as supplied by: Nitterhouse Masonry Products, LLC Phone: 717-267-4500

2.04 AquaPave® ENGINEERED JOINT STABILIZER
A. Pre-bagged AquaPave® Engineered Joint Stabilizer as supplied by: Nitterhouse Masonry Products, LLC Phone: 717-267-4500

PART 3 EXECUTION

3.01 EXAMINATION
Note: Compaction of the soil subgrade may be necessary to achieve stability under vehicle loads. Compaction, however, will reduce the permeability of soils. In such cases, laboratory and on-site testing for density and soil permeability should be conducted. These can help establish a relationship between compacted density and anticipated design permeability after compaction. An experienced civil or geotechnical engineer familiar with local soil conditions should be consulted for determining project standards for the percentage of soil Proctor density and test methods for permeability. When soil compaction is required, standard Proctor density per ASTM D 698 for pedestrian and driveway areas is recommended. Modified Proctor density per ASTM D 1557 is recommended for vehicular areas. Density and moisture should be checked in the field with a nuclear density gauge or other test methods for compliance to specifications. Stabilization of the soil and/or base material may be necessary with weak or continually saturated soils, or when subject to high wheel loads. These conditions may require the use of drain pipes within open-graded bases. Compaction on the “open aggregate base” for pedestrian and residential driveway areas, a minimum 97% standard Proctor density per ASTM D 698 is recommended. For vehicular and high traffic areas, a minimum 97% modified Proctor density per ASTM D 1557 is recommended.

PART 3 EXECUTION

3.01 EXAMINATION
Note: Compaction of the soil subgrade may be necessary to achieve stability under vehicle loads. Compaction, however, will reduce the permeability of soils. In such cases, laboratory and on-site testing for density and soil permeability should be conducted. These can help establish a relationship between compacted density and anticipated design permeability after compaction. An experienced civil or geotechnical engineer familiar with local soil conditions should be consulted for determining project standards for the percentage of soil Proctor density and test methods for permeability. When soil compaction is required, standard Proctor density per ASTM D 698 for pedestrian and driveway areas is recommended. Modified Proctor density per ASTM D 1557 is recommended for vehicular areas. Density and moisture should be checked in the field with a nuclear density gauge or other test methods for compliance to specifications. Stabilization of the soil and/or base material may be necessary with weak or continually saturated soils, or when subject to high wheel loads. These conditions may require the use of drain pipes within open-graded bases. Compaction on the “open aggregate base” for pedestrian and residential driveway areas, a minimum 97% standard Proctor density per ASTM D 698 is recommended. For vehicular and high traffic areas, a minimum 97% modified Proctor density per ASTM D 1557 is recommended.

PART 3 EXECUTION

3.01 EXAMINATION
Note: Compaction of the soil subgrade may be necessary to achieve stability under vehicle loads. Compaction, however, will reduce the permeability of soils. In such cases, laboratory and on-site testing for density and soil permeability should be conducted. These can help establish a relationship between compacted density and anticipated design permeability after compaction. An experienced civil or geotechnical engineer familiar with local soil conditions should be consulted for determining project standards for the percentage of soil Proctor density and test methods for permeability. When soil compaction is required, standard Proctor density per ASTM D 698 for pedestrian and driveway areas is recommended. Modified Proctor density per ASTM D 1557 is recommended for vehicular areas. Density and moisture should be checked in the field with a nuclear density gauge or other test methods for compliance to specifications. Stabilization of the soil and/or base material may be necessary with weak or continually saturated soils, or when subject to high wheel loads. These conditions may require the use of drain pipes within open-graded bases. Compaction on the “open aggregate base” for pedestrian and residential driveway areas, a minimum 97% standard Proctor density per ASTM D 698 is recommended. For vehicular and high traffic areas, a minimum 97% modified Proctor density per ASTM D 1557 is recommended.

PART 3 EXECUTION

3.01 EXAMINATION
Note: Compaction of the soil subgrade may be necessary to achieve stability under vehicle loads. Compaction, however, will reduce the permeability of soils. In such cases, laboratory and on-site testing for density and soil permeability should be conducted. These can help establish a relationship between compacted density and anticipated design permeability after compaction. An experienced civil or geotechnical engineer familiar with local soil conditions should be consulted for determining project standards for the percentage of soil Proctor density and test methods for permeability. When soil compaction is required, standard Proctor density per ASTM D 698 for pedestrian and driveway areas is recommended. Modified Proctor density per ASTM D 1557 is recommended for vehicular areas. Density and moisture should be checked in the field with a nuclear density gauge or other test methods for compliance to specifications. Stabilization of the soil and/or base material may be necessary with weak or continually saturated soils, or when subject to high wheel loads. These conditions may require the use of drain pipes within open-graded bases. Compaction on the “open aggregate base” for pedestrian and residential driveway areas, a minimum 97% standard Proctor density per ASTM D 698 is recommended. For vehicular and high traffic areas, a minimum 97% modified Proctor density per ASTM D 1557 is recommended.
A. Subgrade:
1. Verify that subgrade surface is free from standing water, uniform, even, free of any organic material or sediment, debris, ready for installation of AP-SC 1000 or 2000 geotextile.
2. Verify correct gradients and elevations of subgrade surface, particularly where backup drains are to be located.
3. Verify compaction density and soil permeability.

B. Edge Restraint:
1. Verify location, type, installation and elevations of edge restraints around the perimeter to be paved. Ensure the side of the edge restraint adjacent to the paver is perpendicular to the bedding course. This will ensure a tight fit, eliminating a future trip hazard.

C. Beginning of installation means acceptance of subgrade and edge restraints.

3.02 INSTALLATION
Note: Geotextile is placed on the compacted soil subgrade under the clear crushed open-graded lower sub-base. The geotextile is applied to the bottom and sides of the excavation with overlapped joints a minimum of 30cm (12 in.) overlap is a function of CBR, 30 to 45cm (12 to 18 in.) for CBR 3.0 and above, 60 to 90cm (24 to 36 in.) for CBR 1.0 to 3.0, for CBR values below 1.0 they should be sewn. Please consult manufacturers’ specifications and your Geotechnical Engineer. Overlaps should follow down slope with drainage. All drainpipes, observation wells, overflow pipes, and impermeable liner (if applicable) should be in place per the drawings either prior to or during placement of the base, depending on their location. The open-graded base is typically compacted in 10 to 15 cm (4 to 6 in.) thick lifts with a minimum 10 T (10 ton) static roller. Care must be taken not to damage drainpipes during compaction and paving. There should be at least 4 passes with no visible movement in the base material when compacting.

A. After work in this Section is complete, the Contractor shall be responsible for protecting the work from damage and sediment due to subsequent construction activity on the site.

D. Do not damage drainpipes, overflow pipes, observation wells, or any inlets and other drainage appurtenances during installation.

E. Spread, moisten and compact clear crushed open-graded lower and upper sub-bases in 10 to 15 cm (4 to 6 in.) lifts with a minimum 10 T (10 ton) vibratory roller.
F. For each lift, make at least two passes in the vibratory mode then at least two in the static mode until there is no visible movement of the material.
G. The elevation of the final surface of the clear crushed open-graded upper sub-base should not deviate more than ±13 mm (± 1/2 in.) over a 3 m (10 ft) straightedge.

H. The top surface of the pavers shall extend 3 to 6 mm (1/8 to 1/4 in.) above the final elevations after compaction to compensate for possible minor settling. (see 3.02 T)

I. The final surface elevations shall not deviate more than ±10 mm (±3/8 in.) under a 3 m (10 ft) long straightedge.

J. The surface elevation of pavers shall be 3 to 6 mm (1/8 to 1/4 in.) above adjacent drainage inlets, concrete collars, or channels to allow for future settlement.

3.03 FIELD QUALITY CONTROL
A. After sweeping the surface clean, check final elevations for conformance to the drawings.

B. The top surface of the pavers shall extend 3 to 6 mm (1/8 to 1/4 in.) above the final elevations after compaction to compensate for possible minor settling. (see 3.02 T)

C. Lippage: No greater than 3 mm (1/8 in.) difference in height between adjacent pavers.

3.04 PROTECTION
A. After work in this Section is complete, the Contractor shall be responsible for protecting the work from damage and sediment due to subsequent construction activity on the site.

B. Design consideration should be taken to ensure that soft landscaping is retained to prevent migration of softscape materials on to the AquaPave® surface. This will significantly help to maintain the integrity of the system.

End of section
1. Placing the AP-SC1000 or 2000 woven geotextile with the specified overlap.

2. Placing and spreading of the clear crushed open-graded lower sub-base aggregate without wrinkling or folding the geotextile.

3. Compaction of the lower sub-base.

4. Placing and spreading the clear crushed open-graded upper sub-base.

5. Compaction of the clear crushed open-graded upper sub-base.

6. Placing the AP-SC Intex® geotextile.

7. Placing and spreading of the 5mm (1/4”) clear crush bedding material.

8. Compaction of the 5mm (1/4”) clear crushed open-graded bedding material.

9. Loose screeding of 5mm (1/4”) clear crush open-graded bedding course.

10. Placing the AquaPave® pavers.

11. Initial compaction of the AquaPave® pavers.

12. Spreading and sweeping in of the AP Engineered Joint Stabilizer.

13. Close-up view of the joints with AP Engineered Joint Stabilizer applied before final compactions.

15. Close-up view of the joints with AP Engineered Joint Stabilizer applied after final compactions.
AquaPave® Installation Using Mechanical Laying Equipment, Burnaby, BC

1. Excavation of sub-grade, removing any organic material.
2. AP SC 1000 geotextile is rolled out and fastened to sub-grade.
3. Clear crushed open-graded aggregate lower sub-base is placed, followed by grading and compaction.
4. Paver restraints are placed.
5. Clear crushed open-graded aggregate upper sub-base is placed.
6. Upper sub-base is then graded to elevation and compacted.
7. SC Inbitex® is placed followed by the 5mm (1/4") clear crushed open-graded bedding course.
8. AquaPave® pavers are delivered to site, prearranged on pallets.
9. AquaPave® is placed using mechanical laying equipment, this can increase production to 8,000-10,000 sq. ft. per day with a standard crew.
10. All cuts must be made with a masonry saw.
11. AP Engineered Joint Stabilizer is applied and swept into place.
12. After final compaction the paved area is available for immediate use.
QUALITY CONTROL CHECK LIST FOR AQUAPAVE®
ON-SITE STORMWATER SOURCE CONTROL SYSTEM

This form is provided to assist in the construction of the AquaPave® On-site Stormwater Source Control System and provides a list of the important elements to be checked at each stage of the construction process.

PART 1 OF THE FORM RELATES TO THE CONSTRUCTION OF THE SUB-BASE
PART 2 RELATES TO THE LAYING OF THE PAVING SURFACE

PROJECT OWNER

NAME OF THE GENERAL CONTRACTOR

NAME OF APPROVED AQUAPAVE® CONTRACTOR

SITE ADDRESS

SITE TELEPHONE NUMBER

NAME OF ENGINEER RESPONSIBLE FOR THE PROJECT

PART 1

1.0 SUB-GRADE

1.1 HAS THE SUB-GRADE BEEN EXCAVATED TO THE APPROPRIATE DEPTH AND SLOPE AS INDICATED ON THE DRAWING?

☐ YES ☐ NO

1.2 WERE THERE ANY VARIABLES IN THE SUB-GRADE SUCH AS SOFT SPOTS, EXISTING DRAINS OR CABLES?

☐ YES ☐ NO

IF YES, SPECIFY WHAT WAS DONE TO TREAT THE VARIABLES

1.3 WAS THE SUB-GRADE COMPACTED WITH A VIBRATING ROLLER OR VIBRATING PLATE?

☐ YES ☐ NO

1.4 WERE THERE ANY SHARP STONES OR PROTRUSIONS IN THE SUB-GRADE THAT MAY CAUSE DAMAGE TO THE MEMBRANE? (Not applicable to infiltration systems)

☐ YES ☐ NO

IF YES, WAS A SAND CAPPING LAYER OR PROTECTIVE BLANKET USED?

☐ YES ☐ NO

2.0 GEOTEXTILE

2.1 WAS THE AP-SC 1600 OR 2000 AND THE AP-SC INBITEX® GEOTEXTILE PLACED FLAT AND TIGHT WITH NO FOLDS, WITH THE OVERLAPS FOLLOWING THE DOWN SLOPE WITH DRAINAGE?

☐ YES ☐ NO

2.2 WERE ALL JOINTS OVERLAPPED ACCORDING TO THE SPECIFICATIONS? (Minimum 12 in. or 30 cm)

☐ YES ☐ NO

2.3 WAS GEOTEXTILE TURNED UP AT ALL RESTRAINING EDGES ALLOWING ENOUGH EXCESS TO BE CUT OFF FLUSH WITH THE FINISHED SURFACE?

☐ YES ☐ NO
3.0 NO EXFILTRATION SYSTEM

3.1 WAS THE MEMBRANE LAID BETWEEN THE SUB-GRADE AND THE AP-SC WOVEN GEOTEXTILE?
☐ YES ☐ NO

3.2 WERE THE JOINTS OVERLAPPED 12 in. (30cm) MINIMUM?
☐ YES ☐ NO

3.3 WERE THE JOINTS SEALED WITH TAPE OR WELDED?
☐ YES ☐ NO

3.4 WAS THE MEMBRANE TURNED UP AT ALL RESTRAINING EDGES ALLOWING ENOUGH EXCESS TO BE CUT OFF FLUSH WITH THE FINISHED SURFACE?
☐ YES ☐ NO

4.0 SUB-BASE

4.1 DID THE AGGREGATE USED FOR THE LOWER AND UPPER SUB-BASE COMPLY WITH THE SPECIFICATIONS DETAILED IN THE CONTRACT DOCUMENTATION?
☐ YES ☐ NO

4.1.1 IS THE MANUFACTURER'S SIEVE ANALYSIS ATTACHED?
☐ YES ☐ NO

IF NO, GIVE DETAILS ________________________________

4.2 WHAT DEPTH OF SUB-BASE WAS USED?
LOWER SUB-BASE ____________________

UPPER SUB-BASE ____________________

4.3 WAS THE SUB-BASE CONSTRUCTED IN LIFTS OF NOT MORE THAN 4 to 6 in. (10 to 15cm) AND COMPACTED WITH A MINIMUM 10 TON VIBRATORY ROLLER?
☐ YES ☐ NO

4.4 WAS EACH LIFT COMPACTED SEPARATELY?
☐ YES ☐ NO

4.5 STATE THE TYPE OF COMPACTOR USED ________________________________

5.0 GEOGRID

5.1 WAS A GEOGRID INCORPORATED WITHIN THE SUB-BASE AGGREGATE?
☐ YES ☐ NO

IF YES, GIVE DETAILS ________________________________

5.2 WERE ALL JOINTS OVERLAPPED 12 in. (30cm) MINIMUM?
☐ YES ☐ NO

5.3 IS IT POSITIONED AT THE INTERFACE BETWEEN THE TWO AGGREGATE LAYERS?
☐ YES ☐ NO

6.0 LAYING COURSE

6.1 DOES THE 1/4 in. (5mm) CLEAR CRUSHED OPEN-GRADED AGGREGATE USED, COMPLY WITH SPECIFICATION DETAILS IN THE CONTRACT DOCUMENTATION?
☐ YES ☐ NO

6.1.1 IS THE MANUFACTURER'S SIEVE ANALYSIS ATTACHED?
☐ YES ☐ NO

IF NO, GIVE DETAILS ________________________________

6.2 WAS THE MATERIAL KEPT IN A CLEAN, UNCONTAMINATED CONDITION PRIOR TO USE, AND DURING THE LAYING OPERATION?
☐ YES ☐ NO

6.3 WAS THE LAYING COURSE MATERIAL LOOSE SCREEDED TO A DEPTH OF 2 in. (5cm)?
☐ YES ☐ NO
PART 2

7.0 AQUAPAVE® PAVING SURFACE

7.1 WERE THE AQUAPAVE® PAVERS JOINTED TIGHTLY TOGETHER IN THE APPROPRIATE PATTERN AS SPECIFIED IN THE DRAWINGS? □ YES □ NO

7.2 WERE ALL CUT PAVERS TIGHTLY FITTED, WITH NO CUT UNIT BEING LESS THAN ONE THIRD OF ITS ORIGINAL SIZE? □ YES □ NO

7.3 WAS A MASONRY SAW USED FOR ALL CUTS? □ YES □ NO

7.4 WAS A DRESSING OF 3mm AP-ENGINEERED JOINT STABILIZER APPLIED TO THE SURFACE PRIOR TO FINAL COMPACTION AS SPECIFIED IN THE CONTRACT DOCUMENTATION? □ YES □ NO

8.0 COMPLETION OF WORK

8.1 WAS THE PAVED SURFACE LEFT IN A CLEAN AND TIDY CONDITION UPON COMPLETION? □ YES □ NO

8.2 HAS ANY HEAVY SOFTSCAPING OR PLANT MATERIAL BEEN MOVED OVER THE COMPLETED PAVED SURFACE? □ YES □ NO

IF YES, GIVE DETAILS __

__

8.2.1 WERE APPROPRIATE MEASURES TAKEN TO PROTECT THE SURFACE? □ YES □ NO

GIVE DETAILS __

__

8.3 HAS ANY LOOSE MATERIAL BEEN STORED ON THE PAVED SURFACE? □ YES □ NO

IF YES, GIVE DETAILS __

__

8.4 HAS THE PROJECT OWNER BEEN INFORMED OF THE MAINTENANCE SCHEDULE REQUIRED FOR THEIR NEW AQUAPAVE® ON-SITE STORMWATER CONTROL SYSTEM AND OR IS A COPY OF THE SCHEDULE ATTACHED? □ YES □ NO

9.0 GENERAL COMMENTS

COMMENT ON ANYTHING UNUSUAL THAT HAS BEEN NOTED DURING THE CONSTRUCTION OF THE PROJECT

__

__

__

__

__
Glossary of Terms

Antecedent A preceding occurrence or cause or event.

Bioremediation Use of living organisms to clean up oil spills or remove other pollutants from soil, water, or wastewater.

CBR California Bearing Ratio. An empirical test used for estimating the bearing value of highway sub-bases and subgrades.

Detention An enforced delay.

Detention Pond A pond that temporarily stores stormwater runoff and subsequently releases it at a slower rate than it is collected by the drainage facility system.

Eco-System A system made up of a community of animals, plants, and bacteria and the physical and chemical environment with which it is interrelated.

Exfiltration A gradual escape of fluid.

LEED® Leadership in Energy & Environmental Design. It is a voluntary rating system that is used to evaluate a project in relation to its use of “green building” technology.

Impervious Incapable of being passed through or penetrated.

Inbitex® Inbitex® is a thermally bonded nonwoven geotextile. Inbitex® has been specifically developed to optimize the cleansing of water entering the system. The various characteristics have been combined to create a unique geotextile that aids in the development of naturally occurring and offers them refuge during periods of drought.

Infiltrate To pass, or cause (a fluid) to pass, through small gaps or openings; filter.

Infiltration Rate The rate, usually expressed in inches per hour, at which water percolates or moves down through the soil profile.

In-situ To treat in place.

Non-Point Pollution Source Pollution that enters any waters from any dispersed land based or water-based activities and does not result from discernible, confined, or discrete conveyances. Collectively, this is the largest source of stormwater pollution.

Observation Well A perforated pipe inserted vertically into an open-graded base used to monitor its infiltration rate.

One Hundred Year Storm A very unusual rainfall event that occurs once every 100 years and has a 1% chance of occurring in a given year.

One Year Storm A rainfall event that occurs once a year or has a 100% chance of occurring in a given year.

Outfall Point of water disposal to a stream, river, lake, tidewater, or artificial drain.

Peak Discharge The maximum instantaneous rate of flow during a storm, usually in reference to a specific design storm event.

Permeable Open to passage or penetration, especially by fluids.

PICP Permeable Interlocking Concrete Pavements.

Pretreatment The removal of materials such as solids, grit, grease, and scum from flows prior to physical, biological, or physical processes to improve treatability.

PSC Permanent Stormwater Control Plan. A plan which includes permanent BMP's for the control of pollution from stormwater runoff after construction and/or land distributing activity has been completed.

Retention Pond A pond that is either designed to hold water for a considerable length of time and then release it by evaporation, plant transpiration, and/or infiltration into the ground; or to hold surface and stormwater runoff for a short period of time and then release it to the surface and stormwater management system.

Void Ratio Ratio of the volume of void space to the volume of solid particles in a given mass.

References:

3. Smith, D. R., Permeable Interlocking Concrete Pavement, Interlocking Concrete Pavement Institute, Washington, DC, 2001
4. Dr. Chris Jefferies and Fiona Napier, Urban Water Technology Centre, University of Albertay, Dundee.
5. Stephen Coup, Coventry University
6. John Argue of the Urban Water Resources Centre at the University of South Australia

Patents:

The system and products described in this brochure are covered by patents issued or pending in the following countries: Australia, Canada, European Patent Convention, Great Britain, New Zealand, Singapore, South Africa and the United States of America.

Nitterhouse Masonry Products, LLC’s policy of continuous product development may necessitate changes to specifications without prior notification. All drawings and text are covered by copyright and may not be reproduced or transmitted in any form without prior consent from Nitterhouse Masonry Products, LLC.

NMP-04-30-08
AQUA Pave®
The Permeable Paving System That Doesn't Look Like One